Publié le

Le systeme EVAP

LES SYSTÈMES DE RECYCLAGE DES VAPEURS DE CARBURANT

Bien qu’ils soient parfois visibles à l’œil nu, les gaz d’échappement ne constituent pas la seule source de pollution automobile. Le réservoir d’essence laisse, compte à lui, échapper dans l’atmosphère des vapeurs d’hydrocarbures nocifs pour l’environnement et la santé. Bien que le plomb ait été banni comme additif à l’essence, ses vapeurs en sont pas moins encore nuisibles à l’écosystème.

Pour mettre fin à la pollution automobile sous la forme de gaz, de vapeurs, de fumée, le gouvernement américain a imposé au milieu des années 70 des normes antipollution auxquelles les constructeurs de véhicules devaient se plier. C’est ainsi qu’est apparu le dispositif de récupération des vapeurs du réservoir et de la cuve du carburateur à cette époque.

Puis, les normes OBD-I, de première génération, ont fait leur apparition, suivies des normes OBD-II, de deuxième génération, plus sévères et plus complètes que la précédente.

Actuellement, la réglementation OBD-II exige que le système de récupération et de purge des vapeurs de carburant, appelé «système de recyclage des vapeurs de carburant» (EVAPorative emission system – EVAP system) par la Société des ingénieurs de l’automobile (Society of Automotive Engineers – SAE), soit surveillé continuellement et contrôlé périodiquement par le module de commande du groupe motopropulseur (Powertrain Control Module – PCM) pour son étanchéité, son rendement (exempt de restrictions) et du bon fonctionnement de ses composants. Ces prouesses techniques ne seraient pas possibles sans l’ajouts de nouveaux contrôles et accompagnées, malencontreusement, de son lot de complexité.

La méthode de surveillance automatique (monitoring) de détection de fuites du système de recyclage des vapeurs de carburant par le module de commande du groupe motopropulseur n’est, hélas, pas le même pour tous les constructeurs de véhicules.

C’est pourquoi, afin que vous soyez en mesure de résoudre des problèmes relatifs aux codes d’anomalie, vous devez connaître les composants des systèmes de recyclage des vapeurs de carburant, le fonctionnement des commandes de purge et les contrôles d’étanchéité des canalisations de récupération et de purge des vapeurs de carburant.

Saviez-vous qu’un problème au niveau du système de recyclage des vapeurs de carburant peut produire un démarrage difficile, des hésitations, des à-coups, un manque de puissance, du cliquetis (pinking) ou de la détonation, un fonctionnement irrégulier du ralenti et une consommation excessive de carburant?

 

UN PEU D’HISTOIRE

Le système de recyclage des vapeurs de carburant fit son apparition en 1970. Les appellations étaient diverses: Système de contrôle de l’évaporation (Evaporation Control System – ECS), Contrôle de l’émission de l’évaporation (Evaporative Emission Control – EEC), Recyclage des vapeurs d’essence des véhicules (Vehicle Vapor Recovery – VVR) ou encore, Système de récupération des vapeurs d’essence (Vapor Saver System – VSS). Le but de ceux-ci était de récupérer les vapeurs d’hydrocarbures (HC) provenant du réservoir d’essence et de la cuve du carburateur. À cette époque, les pertes par évaporation au niveau du réservoir d’essence et de la cuve du carburateur comptaient pour 10 % à 15 % des hydrocarbures dissipés dans l’atmosphère par une automobile. Depuis cette époque, on ne met plus les réservoirs en communication directe avec l’air libre. C’est ainsi que les vapeurs d’essence ont été acheminées soit à un récipient de charbon de bois (charcoal canister) qui a la propriété de les absorber, soit au carter moteur où elles étaient emmagasinées. Dès l’instant que le moteur était en marche, la dépression produite dans la tubulure d’admission aspirait, selon certaines conditions, ces vapeurs de carburant du récipient ou du carter et les amenait aux chambres de combustion du moteur où elles étaient brûlées.

 

EXIGENCES PLUS SÉVÈRES

Compte tenu de l’augmentation de la pollution atmosphérique dans les grands centres urbains par les émanations des véhicules automobiles, agences et gouvernements ont établi de nouveaux règlements et de nouvelles normes en matière de pollution de l’air pour aider à régler le problème. Ainsi sont apparues les réglementations aux normes OBD-I (On Board Diagnostic – diagnostic embarqué de première génération) et, plus tard, celles aux normes OBD-II (On Board Diagnostic – diagnostic embarqué de deuxième génération) exigeant des constructeurs d’automobiles à se conformer à ces normes antipollution.

 

STRATÉGIES DE COMMANDES

Les stratégies de commandes des systèmes de recyclage des vapeurs de carburant sont l’œuvre de millions de calculs effectués en une seconde par un ordinateur de bord lesquels ont permis aux constructeurs de véhicules de respecter les normes concernant les émanations polluantes.
Les systèmes de recyclage des vapeurs de carburant utilisent l’ordinateur de bord, appelé «module de commande du groupe motopropulseur« (Powertrain Control Module – PCM) et plusieurs dispositifs connexes (sondes, capteurs, interrupteurs et actionneurs). Ces derniers sont des dispositifs comme les sondes de température, les capteurs de pression. les interrupteurs de circuits ouverts ou fermés et les électrovalves, etc. qui sont répartis un peu partout sur le moteur et le système à commander lesquels sont raccordés à l’ordinateur de bord par des fils électriques.

L’ordinateur de bord, au cœur même du système de commande, contient plusieurs programmes qui comportent des valeurs de référence préprogrammées de rapport d’air/carburant, d’avance à l’allumage, de largeur d’impulsion des injecteurs, etc., peu importe des conditions de conduite. Ces valeurs sont programmées à l’usine et elles sont propres à chaque année-modèle de véhicules.

L’ordinateur de bord commande le système de purge des vapeurs du réservoir de carburant en observant les entrées et en gérant les systèmes d’alimentation et d’allumage.

CONTRÔLES D’ÉTANCHÉITÉ

Avant que ne soient exigés les contrôles de détection de fuites sur les systèmes de recyclage des vapeurs de carburant du réservoir, des vérifications et des contrôles étaient effectués aux composants de détection de fonctionnement du système et à la purge de l’absorbeur de vapeurs de carburant par le module de commande du groupe motopropulseur. Ces systèmes de recyclage des vapeurs de carburant étaient appelés «systèmes non améliorés» (non-enhanced EVAP system).

À partir de 1996, les exigences de la réglementation OBD-II obligeaient les constructeurs de véhicules à concevoir des systèmes de recyclage des vapeurs de carburant ayant la possibilité de détecter une fuite du circuit de récupération et de purge des vapeurs de carburant de l’ordre de 1 mm (millimètre) de diamètre. Depuis l’année 2000, les exigences à la détection de fuites est passé à 0,5 mm de diamètre. Ces systèmes de recyclage des vapeurs de carburant sont appelés, dès lors, «systèmes améliorés» (enhanced EVAP system).

Malheureusement, les constructeurs de véhicules emploient chacun des technologies et des stratégies différentes pour effectuer les vérifications de bon fonctionnement de leur système de recyclage des vapeurs de carburant non-amélioré. Également pour les systèmes améliorés lesquels, en plus de vérifier le bon fonctionnement du système, contrôlent l’étanchéité du circuit de récupération et de purge de l’absorbeur de vapeurs de carburant.

Au cours d’essais antipollution, on a constaté que les systèmes de recyclage des vapeurs de carburant, ayant une fuite de 0,5 mm de diamètre, pouvaient produire en moyenne près de 1,35 g (gramme) d’hydrocarbures au 1,6 km (kilomètre), soit plus de 30 fois les normes antipollution admissibles.

RÉCUPÉRATION DES VAPEURS DE RAVITAILLEMENT

Les systèmes de recyclage des vapeurs de carburant améliorés incorporent aussi, depuis 1998, un dispositif de récupération des vapeurs de ravitaillement embarqué (On-board Refueling Vapor Recovery – ORVR) lequel est utilisé pour retirer les vapeurs excessives du réservoir de carburant. Cela se produit lors du ravitaillement en carburant du véhicule.

PROCÉDURES DU DIAGNOSTIC EMBARQUÉ

Le module de commande du groupe motopropulseur est programmé pour surveiller de nombreux circuits différents, au niveau de l’injection, de l’allumage, de l’échappement et du moteur. Si le module de commande du groupe motopropulseur détecte un problème dans un circuit surveillé suffisamment souvent pour indiquer un problème réel, il mémorise un code d’anomalie. Si le code d’anomalie est sans rapport avec l’échappement, et si le problème est réparé ou cesse d’exister, le module de commande du groupe motopropulseur efface le code après quarante cycles de réchauffement du moteur. Les codes d’anomalie qui affectent les émissions gazeuses allument le témoin d’anomalie. Les codes d’anomalie sont mémorisés par le module de commande du groupe motopropulseur selon certains critères. Ces critères peuvent être une gamme déterminée de régime du moteur, de température du moteur et/ou de tension d’entrée vers le module de commande du groupe motopropulseur. Il peut arriver qu’un code d’anomalie d’un circuit surveillé ne soit pas mémorisé malgré l’apparition d’un dysfonctionnement. Ceci peut arriver si un critère n’est pas présent. Par exemple, supposons que l’un des critères pour un circuit soit un régime moteur compris entre 750 et 2.000 tr/min. En cas de court-circuit de sortie vers la masse alors que le régime moteur est supérieur à 2.400 tr/min, une entrée de 0 V sera détectée par le module de commande du groupe motopropulseur. Toutefois, un code d’anomalie ne sera pas mémorisé parce que le critère de régime moteur n’est pas satisfait, celui-ci étant supérieur à la limite maximum de 2.000 tr/min. Le module de commande du groupe motopropulseur surveille de multiples situations de fonctionnement pour lesquelles il mémorise des codes d’anomalie.

REMARQUE: Certaines procédures de diagnostic peuvent entraîner la mémorisation d’un code d’anomalie. Par exemple, débrancher le capteur de position du papillon (Throttle Position sensor – TP sensor) quand le contact est mis peut faire mémoriser le code d’anomalie suivant: tension de capteur de position de papillon élevée (throttle position sensor high). Quand une réparation est achevée et confirmée effacez tous les codes d’anomalie.

Le diagnostic OBD-II est appliqué sur tous les véhicules automobiles 1996 et plus récents vendus sur le continent nord-américain. Cela comprend les véhicules domestiques, asiatiques et européens.

Certains véhicules automobiles 1994 et 1995 sont déjà compatibles avec la réglementation OBD-II. Pour le savoir, il suffit de vérifier l’étiquette d’information de contrôle des émissions du véhicule.

Publié le

Techniques de recherche de fuites de vapeurs de carburant

DÉBUT ESSENTIEL AU DIAGNOSTIC

Rien de bien compliqué pour le technicien, il lui suffit de sortir le code d’anomalie (Diagnostic Trouble Code –DTC) qui lui révélera le système affecté et la condition du problème. Ici, le code indique un problème au système de recyclage des vapeurs de carburant (EVAP system). Le diagnostic peut prendre quelques minutes ou durer plusieurs jours dépendant des connaissances du système et la disponibilité de l’équipement de diagnostic.

STRATÉGIES DE DIAGNOSTIC

Une majorité de techniciens avouent que les problèmes de systèmes de recyclage des vapeurs de carburant sont les plus difficiles à comprendre. Les constructeurs automobiles sont tous contraints à respecter deux choses obligatoires sur leur « EVAP system » : contrôler l’étanchéité des circuits de stockage et de purge des vapeurs de carburant et valider la commande du système à purger ces vapeurs de carburant. Mais leurs méthodes de contrôle et de validation varient de façon significative et obligent le technicien à changer de stratégie de diagnostic à chaque fois qu’il change de marque, de modèle et d’année de véhicule. Encore maintenant, l’orifice de service (service port) permettant de vérifier l’étanchéité du système de recyclage des vapeurs de carburant n’est pas très populaire chez les constructeurs.

VÉRIFICATIONS GÉNÉRALES

Ensuite, localisez l’électrovalve d’aération de l’absorbeur de vapeurs de carburant (fuel vapor vent solenoid). Celle-ci est relativement facile à découvrir. Dans bien des cas, elle est installée sur l’absorbeur de vapeurs de carburant. La fermeture de l’électrovalve d’aération de l’absorbeur de vapeurs de carburant est possible si vous ne possédez pas un analyseur-contrôleur. Vous pouvez obtenir sa fermeture manuellement avec un multimètre numérique (fig.1).

 figX1

PROCÉDURE

La procédure consiste à débrancher le connecteur de l’électrovalve d’aération de l’absorbeur de vapeurs de carburant, de tourner le commutateur d’allumage à la position « ON » seulement, puis de connecter le fil noir du multimètre à une bonne masse du véhicule et d’utiliser le fil rouge du multimètre afin d’identifier la masse et la tension du connecteur à deux fiches et de le rebrancher au solénoïde. Placez votre multimètre à la position mA. Connectez le fil rouge du multimètre à la fiche du connecteur que vous aviez identifiée comme la masse et connectez le fil noir du multimètre à une bonne masse du véhicule. Cette façon de faire, activera l’électrovalve d’aération de l’absorbeur de vapeurs de carburant à la position fermée permettant ainsi d’effectuer un test de fuite. Ne laissez pas le solénoïde de l’électrovalve sous tension plus de 5 minutes. Si vous êtes incapable de procéder à sa fermeture soit avec un analyseur-contrôleur ou un multimètre numérique, alors, bouchez tout simplement l’entrée d’aération de l’électrovalve avec un bouchon. Malheureusement, ceci ne vous permet pas de vérifier l’étanchéité de l’électrovalve sous activation. Cette dernière est souvent la cause de fuite du système.

SYSTÈME À POMPE DE DÉTECTION DE FUITES

Bien souvent, des questions sont posées au sujet du système atypique qu’est la détection de fuites à l’aide d’une pompe (Leak Detection Pump – LDP). La figure 2 montre une vue en coupe de la pompe en tant que telle, incluant le solénoïde de détection de fuites (Leak Detection Pump solenoid – LDP solenoid). La figure 3 illustre ce système unique

 figX2

 figX3

DESCRIPTION

En temps normal, l’air peut entrer et sortir dans le système par le passage ouvert de la soupape d’aération de l’absorbeur de vapeurs de carburant (vent valve plunger), normalement ouverte (N.O.). Le solénoïde de détection de fuites, quant à lui, ferme le passage à la dépression du moteur. figX4 Le solénoïde de détection de fuites possède un connecteur à 3 fils. L’un d’eux, fournit la tension au solénoïde et à l’interrupteur de pompe (reed contact signal switch), normalement fermé (N.F.) avec le commutateur d’allumage à la position « ON » et moteur « OFF » (Key ON, Engine OFF – KOEO). Un autre fil sert à l’interrupteur de pompe lequel fournit un signal d’entrée de rétroaction au module de commande du groupe motopropulseur (PCM) quand la membrane atteint sa course montante complète. Le dernier fil sert au module de commande du groupe motopropulseur afin de cycler le solénoïde de détection de fuites (fig. 4).

TESTS DE FONCTIONNEMENT ET D’ÉTANCHÉITÉ

Le solénoïde de détection de fuites peut être testé avec un voltmètre et une pompe à vide. Utilisez un multimètre numérique afin de déterminer lequel des fils est la tension et lequel est la commande du solénoïde. Puis, débranchez le conduit de dépression du moteur au solénoïde et branchez à la place une pompe à vide. Connectez ensuite, le fil rouge du multimètre à la fiche de signal d’entrée de rétroaction de l’interrupteur de pompe et le fil noir du multimètre à une bonne masse. Maintenant, le solénoïde aura besoin d’être activé avec un fil cavalier. Connectez une des extrémités du fil cavalier à la fiche identifiée auparavant comme commande du solénoïde et connectez l’autre extrémité du fil cavalier à une bonne masse. Le but est de déplacer le solénoïde afin de permettre à la dépression de la pompe à vide d’agir sur la membrane. Encore là, ne laissez pas le solénoïde de l’électrovalve sous tension plus de 5 minutes. Appliquez une dépression avec la pompe à vide. Une dépression de 5 pouces devrait être maintenue, sinon la soupape d’aération de l’absorbeur de vapeurs de carburant n’est pas étanche ou la pompe de détection de fuites ne tient pas la dépression. Au départ, sans dépression, le multimètre devrait indiquer une tension et, au fur et à mesure que la dépression augmente, la membrane de la pompe de détection de fuites continuera à monter jusqu’à ce que l’interrupteur s’ouvre et que la tension au multimètre tombe à zéro. Si le solénoïde de détection de fuites retient la dépression et que la tension change, alors la pompe de détection de fuites travaille correctement (fig.5). L’étape finale est le test du solénoïde de détection de fuites. Ce test peut être accompli avec le commutateur d’allumage à la position « OFF ». Débranchez le conduit de pression atmosphérique, celui qui est situé près du connecteur électrique, et branchez-y, à la place, la pompe à vide. Appliquez approximativement une dépression de 12 pouces au solénoïde de détection de fuites laquelle devrait tirer la membrane vers le haut fermant ainsi la soupape d’aération de l’absorbeur de vapeurs de carburant. Dès le moment que la soupape d’aération de l’absorbeur de vapeurs de carburant est fermée, vous pouvez procéder au test de recherche de fuites dans le système.   figX5 Au départ, localiser l’électrovalve de purge de l’absorbeur de vapeurs de carburant (fuel vapor purge solenoid) n’est pas une mince affaire. Néanmoins, cette dernière possède un connecteur à deux fils et deux conduits souples, l’un branché à la tubulure d’admission ou un raccord en T et l’autre branché à l’absorbeur de vapeurs de carburant (canister). Vérifiez dont l’étanchéité de ce conduit qui est le plus long du système. Également, vérifiez l’étanchéité du conduit entre la tubulure l’admission et l’électrovalve de purge de l’absorbeur de vapeurs de carburant, et aussi l’étanchéité de celle-ci. Une pompe à dépresion devrait faire l’affaire. Quand un client se présente au garage avec le témoin « Check Engine » allumé, c’est un propriétaire paniqué qui vous demande si c’est grave et combien de temps ça prendra pour résoudre ce problème. Bien sûr, on n’a pas suffisamment d’informations pour répondre au client. Celui-ci vous dira que le véhicule se comporte normalement, je n’ai rien remarqué d’anormal (il ne faut pas oublier que la technologie OBD-II possède la capacité de surveiller, en tout temps, ses systèmes si le véhicule ne pollue pas au-delà des limites permises par la réglementation).